C++ “Hello world”

Ok, the most famous first program on any programming language is the “Hello world” program, so I will explain how to create one in this post.

In my example I will use “g++” in a Linux environment, but “clang++” works exactly the same.

To create a “Hello world” in C++, you need to create an empty file and give it a name with an extension (any name, for example HelloWorld.cpp); “cpp”, “cxx” or “cc” are well-known C++ file name extensions.

The compiler does not verify if the filename is equal to the name of the “class” or anything inside the file; the file can be stored on any folder too, you do not need to create it inside a special folder containing all stuff of a given “package” (à la Java), for example.

So, after creating an empty HelloWorld.cpp, you can open it using any text editor and start to write the following lines of code:

#include <iostream>

int main()
{
  std::cout << "Hello world\n";
}

Save it, open a terminal, go to the folder where your file is located and there, enter this:

g++ HelloWorld.cpp -o HelloWorld

If after entering that command line you do not get any message, BE HAPPY! Your program compiled properly. Otherwise, you did some error in your code and you need to fix it and compile it again.

After compiling it properly, you need to execute the program. In a Linux/Unix environment, you do that writing the name of the program after a ./ :

./HelloWorld

And the program should show:

Hello world

Understanding how all of this worked

The compilation process in C++ has basically three steps:

  1. Passing your program through the "preprocessor"; an entity that performs several text transformations on your code before being compiled.
  2. The actual compilation process, that turns all your code into machine code with several calls to functions that are located in other libraries.
  3. The linking process, that binds the function calls with the actual functions in the libraries the program uses. If you do not specify anything (as in our case), your program will be linked only to the Standard Library that ships with any C++ compiler.

The parts of the program

#include

#include <iostream>

All things that start with "#" are called "preprocessor directives", that are instructions the preprocessor understands and executes.

#include tells to the preprocessor to look for the file named inside quotes or less-than and greater-than and put its content in the place the #include directive was invoked.

If the filename is inside less-than and greater-than characters (as in our case), the preprocessor will look for the file in a previously defined folder the compiler knows about. So, it will look for the file iostream in that folder. In a Linux environment, those files are generally in a path similar to this one (I am using g++ 8.2):

/usr/include/c++/8

If the filename is declared between double quotes, it means the file will be in the current folder or in a folder explictly mentioned while compiling the program.

iostream is the file that contains a lot of code that allows our programs to have data input and output. In our “Hello World”, we will need “std::cout” that is defined in this file.

main function
int main()

When you invoke your program, the operating system needs to know what piece of code it needs to execute. Such piece of code lives inside the function main.

All functions must return something, for example, if you call a function sum that sums two numbers, it must return a value containing the result of the sum. So, the function sum must return an integer value (an int). Some old compilers used to allow the function main() to return “void” (that means: “return nothing”) but the C++ standard specifies the main() function must return an int value.

Anyway, though this function is declared returning an int, if you do not return anything, the compiler does not complain about that and returns a 0. Notice that this behavior is exceptional and it is only allowed for the function main().

The return value of function main() specified if an error occurred or not. 0 means that no error occurred during the program executed; and a non-zero value means that an error occurred. The specific value being returned is completely depending on the programmers design and error mechanisms defined by them.

The program will be executed while the function main() is being executed. When its execution ends, the program automatically ends returning the return value to the Operating System.

The body of any function is declared inside two curly braces.

std::cout
std::cout << "Hello world\n";

std::cout is a pre-existing object that represents the command line output. The “<<" is an operator that basically does, in this case, sends the text "Hello world\n" to the std::cout object, producing an output of such text in the terminal.

The \n character sequence means an end of line.

g++

g++ is the most popular C++ compiler for Unix platforms. These days clang has a lot of popularity and you can replace one to other because clang parameters are completely compatible to the g++ ones.

When you say something like:

g++ HelloWorld.cpp

You are instructing to the g++ compiler to go through all the compilation process for the file “HelloWorld.cpp”. “Go through all the compilation process” in this case means: Running the preprocessor on the file, compiling it, linking it and producing an executable.

Since in this command line in my example above I did not mention the name of the executable file, the g++ command generates a file called “a.out” in the current folder.

To specify the name of the file to be generated, you must invoke g++ with the “-o” option and then the name of the executable file to be generated.

amatista

These last two months in my spare time I was working on a new UI toolkit written on top of SDL2.

My design decisions about it were:

  • Coded in modern C++17.
  • Support for WebAssembly since the very beginning.
  • Built on top of SDL2 because of its portability to several platforms and because SDL2 is WebAssembly-ready thanks to Emscripten.
  • Template-based ==> Header files only.
  • Policy-design based, composition through multiple inheritance.
  • No runtime polymorphism.
  • Highly customizable.
  • All controls created using value semantics, i.e. no manual memory allocation.

It is in a very initial stage, the API is highly unstable yet, even my design decisions could change depending on how the implementation goes and whether the emerging requirements will fit in the current design; but it is starting to get shape.

So, please take a look at:

https://bitbucket.org/ebasconp/amatista

The demo code is in the “demo” folder. The only control available is a button.

 

 

C++: variant

Let’s suppose I have a system that handles students, teachers and crew of a school.

To model that in an object oriented style, I would have a class hierarchy similar to this one:

class person
{
	std::string name;
	
public:
	template <typename String>
	person(String&& name) : name { forward<String>(name) }
	{
	}
	
    virtual ~person() { }
    const string& get_name() const { return name; }
	virtual void do_something() = 0;
};

class student : public person
{
public:
	using person::person;
	
	void do_homework()
	{
		cout << "Need access to Stack Overflow\n";
	}
	
	void do_something() override
	{
		cout << "I am doing something the students do\n";
	}
};

class teacher : public person
{
public:		
	using person::person;

	void teach()
	{
		cout << "This is the unique truth\n";
	}
	
	void do_something() override
	{
		cout << "I am doing something the teachers do\n";
	}
};

class crew : public person
{
public:
	using person::person;
	
	void help_team()
	{
		cout << "I am helping teachers and students\n";
	}
	
	void do_something() override
	{
		cout << "I am doing something crew do\n";
	}
};

And my collection would be defined like this:

map<size_t, person*> people;

where the size_t ID would be the key of the map.

Since I do not want to deal with raw pointers, this would be a better definition:

map<size_t, unique_ptr<person>> people;

Now, I will insert some elements to my collection:

people.insert(make_pair(14, make_unique<student>("Phil Collins")));
people.insert(make_pair(25, make_unique<teacher>("Peter Gabriel")));
people.insert(make_pair(32, make_unique<crew>("Justin Bieber")));

To get the name of person 14, I should do something like:

people.find(14)->second->get_name(); //being 100% sure that person with ID 14 exists

And to do something specific implemented in a derived class, I need to downcast:

static_cast<crew&>(*people.find(32)->second).help_team();

Since C++11, the language has been evolving to a more generic and more template metaprogramming-like paradigm and has been getting away from the classical OOP design where inheritance and polymorphism are amongst the most important tools.

So, how could I implement something similar to the thing shown above without inheritance and polymorphism?

Let me introduce std::variant ! :)

C++17 introduced variant, that is basically a template class where you specify the possible types of the values that the variant instance can store, so, for my example, I could define something like:

using person = std::variant<student, teacher, crew>;

In this line, I am defining an alias person that represents a variant value that can store a student, a teacher or a crew (think on variant to be something like a typesafe union).

So, my map would be defined in this way:

map<size_t, person> people;

And my classes student, teacher, and crew could be defined as follows:

class student
{
	std::string name;
public:
	template <typename String>
	student(String&& name) : name { forward<String>(name) }
	{
	}
	
	const string& get_name() const { return name; }
	
	void do_homework()
	{
		cout << "Need access to Stack Overflow\n";
	}
	
	void do_something()
	{
		cout << "I am doing something the students do\n";
	}
};

class teacher
{
	std::string name;
public:		
	template <typename String>
	teacher(String&& name) : name { forward<String>(name) }
	{
	}
	
	const string& get_name() const { return name; }

	void teach()
	{
		cout << "This is the unique truth\n";
	}
	
	void do_something()
	{
		cout << "I am doing something the teachers do\n";
	}
};

class crew
{
	std::string name;
	
public:
	template <typename String>
	crew(String&& name) : name { forward<String>(name) }
	{
	}
	
	const string& get_name() const { return name; }
	
	void help_team()
	{
		cout << "I am helping teachers and students\n";
	}
	
	void do_something()
	{
		cout << "I am doing something crew do\n";
	}
};

To make my example clean and to demonstrate that I do not need inheritance and polymorphism, notice I am not defining a base class nor I am defining virtual methods at all. Anyway. in real production code the coder could create a base class with no virtual methods and inherit from such class to avoid code duplication.

Notice also I am not using any pointer (raw or smart), so the map will contain actual values, removing one level of indirection and letting the compiler optimize based on that knowledge.

So, let me add some objects to the map:

people.insert(make_pair(14, student { "Phil Collins" }));
people.insert(make_pair(25, teacher { "Peter Gabriel" }));
people.insert(make_pair(32, crew { "Justin Bieber" }));

To get the person with id 14:

auto& the_variant = people.find(14)->second;

To get the “student” inside that variant object, I need to use the function get:

auto& the_student = get(the_variant);
cout << the_student.get_name() <<  "\n";

If I try to get an object that is not of the type stored in the variant, the system will throw a std::bad_variant_access exception, for example if I try to do this with the variant from the example above:

auto& the_student = get<teacher>(the_variant);

To execute a specific method of a given class, I do not need to do any downcasting because I already have the object of the given type, so, instead of:

static_cast<crew&>(*people.find(32)->second).help_team();

I would do:

get<crew>(people.find(32)->second).help_team();

that is by far straight and cleaner.

Now, given I have a method called “do_something” in all my classes, I would want to be able to invoke it no matter the type of the object stored in the variant.

So, I need to do something like this in the polymorphic world:

for (auto& p : people)
{
	p.second->do_something();
}

To do this, there is a function called: std::visit.

What visit does is accessing the variant object and invoke the method passed as argument with the object stored in the variant. So, given my example, I could do something like:

auto& the_variant = people.find(14)->second;
visit([](auto& s)
{
	s.do_something();
}, the_variant);

The magic is in the “auto” part here. When you “visit” a variant, the compiler generates one method for each type specified in the variant declaration, in my case 3 (one for student, one for crew and one for teacher), and executes the specific method depending on the type of the value stored in the variant. So, to execute do_something() for all objects in the variant, I need to do something like:

for (auto& p : people)
{
    visit([](auto& s)
	{
	    s.do_something();
    }, p.second);
}

It is beautiful, isn’t it? Polymorphic-like behavior with no overhead that polymorphism brings.

C++: “auto” return type deduction

Before C++14, when implementing a function template you did not know the return type of your functions, you had to do something like this:

template <typename A, typename B>
auto do_something(const A& a, const B& b) -> decltype(a.do_something(b))
{
  return a.do_something(b);
}

You had to use “decltype” in order to say the compiler: “The return type of this method is the return type of method do_something of object a”. The “auto” keyword used to say the compiler: “The return type of this function is declared at the end”.

Since C++14, you can do something by far simpler:

template <typename A, typename B>
auto do_something(const A& a, const B& b)
{
  return a.do_something(b);
}

In C++14, the compiler deduces the return type of the methods that have “auto” as return type.

Restrictions:

All returned values must be of the same type. My example below does not compile because I am returning an “int” or a “double”.

auto f(int n)
{
	if (n == 1)
		return 1;

	return 2.0;
}

For recursive functions, a return value must be returned before the recursive call in order to let the compiler to know what will be the type of the value to return, as in this example:

auto accumulator(int n)
{
	if (n == 0)
		return 0;

	return n + accumulator(n - 1);
}

C++11: std::tuple

A tuple is a C++11 construction and it is built heavily on variadic templates.

A tuple is a variadic class template that stores an unlimited set of values of different types, defined when instantiating the tuple; for example:

tuple<int, int> x;

will store 2 integers.

tuple<string, int, bool> y;

will store one string, one integer and one boolean and so on.

Continue reading “C++11: std::tuple”

C++: Smart pointers, part 5: weak_ptr

This is the last of several posts I wrote related to smart pointers:

  1. Smart pointers
  2. unique_ptr
  3. More on unique_ptr
  4. shared_ptr
  5. weak_ptr

In modern C++ applications (C++11 and later), you can replace almost all your naked pointers to shared_ptr and unique_ptr in order to have automatic resource administration in a deterministic way so you will not need (almost, again) to release the memory manually.

The “almost” means that there is one scenario where the smart pointers, specifically, the shared_ptr instances, will not work: When you have circular references. In this scenario, since every shared_ptr is pointing to the other one, the memory will never be released.

Continue reading “C++: Smart pointers, part 5: weak_ptr”

C++11: Perfect forwarding

Consider this function template invoke that invokes the function/functor/lambda expression passed as argument passing it the two extra arguments given:

#include <iostream>
#include <string>

using namespace std;

void sum(int a, int b)
{
    cout << a + b << endl;
}

void concat(const string& a, const string& b)
{
    cout << a + b << endl;
}

template <typename PROC, typename A, typename B>
void invoke(PROC p, const A& a, const B& b)
{
    p(a, b);
}

int main()
{
    invoke(sum, 10, 20);
    invoke(concat, "Hello ", "world");
    return 0;
}

Nice, it works as expected and the result is:

30
Hello world

Continue reading “C++11: Perfect forwarding”